
ADAPTIVE FILTERS FOR PIECEWISE SMOOTH SPECTRAL DATA

EITAN TADMOR AND JARED TANNER

Abstract. We introduce a new class of exponentially accurate filters for processing piecewise
smooth spectral data. Our study is based on careful error decompositions, focusing on a rather
precise balance between physical space localization and the usual moments condition. Exponential
convergence is recovered by optimizing the order of the filter as an adaptive function of both the
projection order, and the distance to the nearest discontinuity. Combined with the automated edge
detection methods, e.g., [GeTa02], adaptive filters provide a robust, computationally efficient, black
box procedure for the exponentially accurate reconstruction of a piecewise smooth function from
its spectral information.

To David Gottlieb, on his 60th birthday, with friendship and appreciation

1. Introduction

The Fourier projection of a 2π-periodic function, SNf(·), enjoys the well known spectral convergence
rate, that is, the convergence rate is as rapid as the global smoothness of f(·) permits. Specifically, if
f(·) has s bounded derivatives then |SNf(x)− f(x)| ≤ Const‖f‖Cs ·N1−s. This interplay between
global smoothness and spectral convergence is reflected in the dual Fourier space through the
rapidly decaying Fourier coefficients |f̂(k)| ≤ 2π‖f‖Cs |k|−s. On the other hand, spectral projections
of piecewise smooth functions suffer from the well known Gibbs’ phenomena, where the uniform
convergence of SNf(x) is lost in the neighborhood of discontinuities and the global convergence rate
of SNf(x) deteriorates to first order. These related phenomena are manifestations of unacceptably
slowly decaying Fourier coefficients.
Two interchangeable processes are available for recovering the rapid convergence in the piecewise
smooth case. These are mollification, carried out in the physical space and filtering, carried out in
the Fourier space. Filtering accelerates convergence when premultiplying the Fourier coefficients
f̂(k) by a rapidly decreasing function σ(·), resulting in modified coefficients, f̂(k)σ(|k|/N), with a
greatly accelerated decay rate as |k| ↑ N . This accelerated decay in the dual space corresponds to a
smoothly localized mollification in the physical space. In [TT02] we showed how to parameterize an
optimal mollifier in order to gain the exponential convergence for piecewise analytic f ’s. The key
ingredient in our approach was adaptivity, where the optimal mollifier is adapted to the maximal
region of local smoothness. Here we continue the same line of thought by introducing adaptive
filters, which allow the same optimal recovery of piecewise smooth functions from their Fourier
coefficients. In particular, piecewise analytic functions are recovered with exponential accuracy. A
brief overview follows.
We consider a family of general filters σ(·) which are characterized by two main properties. First,
we seek the rapid decay of σk := σ(|k|/N) which is tied to a regular, compactly supported multiplier
σ ∈ Cq

0 [−1, 1]. Being compactly supported, such filters are restricted to N -Fourier expansions,

Sσ
Nf(x) :=

∑

|k|≤N

σ

(
|k|
N

)
f̂(k)eikx.(1.1)
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2 E. Tadmor and J. Tanner

The operation of such filters in Fourier space corresponds to mollification in physical space, ex-
pressed in terms of the associated mollifier, Φσ(y) := 1/2π

∑
|k|≤N σ(|k|/N)eiky ,

Sσ
Nf(x) ≡ f ? Φσ(x) =

1
2π

∫ π

−π
Φσ(y)f(x − y)dy Φσ(y) :=

1
2π

∑

|k|≤N

σ

(
|k|
N

)
eiky.(1.2)

Second, such filters are required to satisfy the usual moments condition, e.g. [MMO78, Va91]

∫ π

−π
ynΦσ(y) = δn0, n = 0, 1, . . . , p − 1 < q.(1.3)

The first requirement of Cq
0 -smoothness is responsible for localization — the essential part of the

associated mollifier, Φσ is supported near the origin, consult (2.5) below. The second property
drives the accuracy of the filter, by annihilating an increasing number of its moments.
The rich subject of filters include the classical filters of finite order accuracy where finite p ≤ q
dictate a fixed convergence of polynomial order, O(N−p), consult [Va91]. By letting q ↑ ∞ one
obtains a C∞

0 [−1, 1]-filter, that is, an infinitely differentiable compactly supported filter σ, which
respects (1.3) for increasing orders p. Majda et. al., [MMO78] employed such filters to postprocess
piecewise solutions with propagating singularities and achieve spectral convergence in the sense
of having a convergence rate faster than any fixed order. Vandeven, [Va91], constructs spectrally
accurate filters by relating the order of the filter, (q, p), to the increasing order of the projection,
q = q(N), p = p(N). An alternative approach for spectral accuracy employs highly oscillatory
mollifiers which are activated in physical space. In [GoTa85], Gottlieb and Tadmor constructed
such (properly dilated) mollifiers of the form Φ(y) = ρ(y)Dp(y), where Dp(·) stands for the usual
Dirichlet kernel of degree p ∼

√
N and ρ is a standard C∞

0 [−1, 1] cut-off function normalized such
that ρ(0) = 1.
The different filters and mollifiers advocated in these works enable to reconstruct the underlying
piecewise smooth data from its given spectral content. Spectral accuracy is achieved in smooth
regions as long as they are bounded away from discontinuities, but the error deteriorates in the
neighborhood of such discontinuities due to spurious oscillations. The latter difficulty was addressed
by Gottlieb, Shu and collaborators, by invoking Gegenbauer expansions which are driven by a
judicious choice of a localizer (1 − y2)λ which are appended to the Dirichlet kernel Dp(y), consult
[GoSh98] and the references therein. Their approach allows for high resolution uniformly up to the
discontinuities, but its precise (p, λ)-parameterization as a function of N has a rather sensitive f -
dependence which impact the overall robustness of the Gegenbauer reconstruction, e.g., [Bo05]. In
[TT02] we have introduced an alternative approach where the accuracy is adapted according to the
maximal region of local smoothness. Specifically, we have shown how the Gottlieb-Tadmor mollifiers
are optimized when their order is chosen adaptively as p ∼ Nd(x). Here d(x) is distance between the
location x to its nearest discontinuity, d(x) = distance(x, sinsuppf(·)); the distance function d(x)
could be recovered from the Fourier coefficients by edge detection, e.g., [GeTa00],[GeTa02]. The
resulting adaptive mollifiers lead to exponentially accurate, numerically robust mollifiers of order
exp(−α(κNd(x))1/α) with α > 1 dictated by the detailed C∞

0 -regularity of ρ; specifically, α > 1
reflects the Gevrey regularity of ρ (for Gevrey regularity and the similar class of ultramodulation
spaces we refer to e.g., [Jo] and [PT02], respectively). The key ingredient in our adaptive approach
is giving up the exact moments condition; instead, (1.3) is satisfied modulo these exponentially-
negligible errors, replacing the exact (1.3) with the requirement

σ(n)(0) = δn0, n = 0, 1, . . . , p − 1 < q.(1.4)

The precise relation between (1.4) and (1.3) is quantified in theorem 2.2 below. We note that it
is rather simple to construct admissible filters satisfying the last requirement for an arbitrary p; a
prototype example is given by the C∞

0 [−1, 1]-filters
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σp(ξ) =





exp

(
ξp

ξ2 − 1

)
, |ξ| < 1

0 |ξ| ≥ 1.
(1.5)

The purpose of this paper is to construct a new class of exponentially accurate adaptive filters.
As before, the key issue is the parameterization of their order, p. Here we develop the rigorous
study for the optimal parameterization for such filters. We advocate adaptive filters in the sense
that their order, p = p(N, d(x)), depends on both — the order of the projection, N , and the
distance function d(x). Summarized in theorem 2.1 below, our main result states that the optimal
adaptive filter is determined to be of order p(N) ∼ (Nd(x))1/α with α > 1 reflecting the Gevrey
regularity of σ. While achieving exponential accuracy away from discontinuities, the new filters
are adapted so as to prevent spurious oscillations throughout the computational domain, including
discontinuous neighborhoods. We mention here the adaptive filters introduced by Boyd in [Bo96].
Boyd’s procedure was based on the acceleration summability by the so called Euler lag averaging;
the acceleration was limited, however, since the resulting piecewise constant filters of order p ∼
Nd(x) were consistently larger than the optimal order and they exhibit slower convergence than
the non-adaptive order of [MMO78].
Our current discussion on adaptive filters follows a similar approach for the adaptive Gottlieb-
Tadmor mollifiers constructed in [TT02], ρ(y)Dp(y), where the precise Gevrey regularity of the ρ
allows us to obtain tight error bounds which in turn reveal the optimal adaptive parameteriza-
tion, p = p(N, d(x)). New tight error bounds are outlined in §2 and are confirmed by numerical
simulations in §3.

2. Adaptive order filters

In this section we show how the regularity and moments properties of the filter σ are translated
into precise statements of localization and accuracy of the associated mollifier Φσ(x). We begin by
decomposing the filtering error f(·) − Sσ

Nf(·) = f − f ∗ Φσ into the two terms

f(x) − f ∗ Φσ(x) =
∫ π

−π
Φσ(y)[f(x) − f(x − y)] · [1 − χ(y)]dy +

+
∫ π

−π
Φσ(y)[f(x) − f(x − y)]χ(y)dy =: I1 + I2.(2.1)

Here, χ(·) = χx(·) is a auxiliary cut-off function adapted to the smoothness region of f . To this
end we let d(x) denote the distance between x and its nearest discontinuity so that the y-function
f(x) − f(x − y) remains smooth for the largest symmetric interval, |y| ≤ d(x). We then set
χ(y) ≡ χx(y) := ρ(y/d(x)) where ρ is a standard C∞

0 cut-off function,

χ(y) ≡ χx(y) := ρ
( y

d(x)

)
ρ(y) =

{
≡ 1, |y| ≤ 1/2
≡ 0, |y| ≥ 1.

We observe that the dilated cut-off function χx(y) = ρ(y/d(x)) enforces the support of the first
integrand on the right of (2.1) to be bounded d(x)/2-away from x while the second term is supported
in the d(x)-neighborhood of x. To simplify matters, we assume that ρ is adapted to the same C∞

0

regularity of σ.
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We turn to estimate the first error term on the right of (2.1) which measures the essential localization
of the mollifier. To this end, we use the following aliasing formula, expressing our N -degree mollifier,
Φσ(y) in terms of the equally sampled inverse Fourier transform, ϕσ(y) :=

∫
σ(ξ)eiyξdξ(1),

Φσ(y) ≡ N

2π

∞∑

n=−∞
ϕσ((N(y + 2πn)), Φσ(y) =

1
2π

∑

|k|≤N

σ

(
|k|
N

)
eiky(2.2)

The usual Fourier decay rate estimates then yields,

|Φσ(y)| ≤ N

2π

∞∑

n=−∞
|ϕσ(N(y + 2πn))| ≤ N1−p‖σ‖Cp

∞∑

n=−∞
|y + 2πn|−p

< Const · N‖σ‖Cp(N |y|)−p, ∀p, y ∈ [−π, π].(2.3)

We observe that the first integrand on the right of (2.1) is supported across the possible dis-
continuities of f(x) − f(x − ·). Lack of smoothness excludes the possibility of high-oscillatory
cancelations. Instead we now seek a tight upper bound on the decay of the associated mollifier, Φσ

for |y| ≥ d(x)/2. To this we need to quantify the C∞-regularity of our filter σ. We focus on σ’s
which have Gevrey regularity of order α, denoted Gα below; in our case, σ = σp in (1.5) belong to
G2, namely, there exist constants, M = Mσ and η = ησ > 0 (independent of p) such that

‖σp‖Cp ≤ Mσ(p!)αη−p
σ , α = 2, σp(ξ) =





exp

(
ξp

ξ2 − 1

)
, |ξ| < 1

0 |ξ| ≥ 1.
(2.4)

Details are outlined to lemma 2.1 below. Incorporating the above growth rate into the localization
estimate (2.3) yields

|Φσ(y)| ≤ Const.Mσ(p!)2
( 1

ησN |y|

)p
,

which is minimized at p = pmin := (η · Nd(x))1/2. This shows that with this choice of adaptive p,
the mollifier associated with our σ-filter, Φσ is essentially localized in the neighborhood of x, as it
admits an exponential decay

|Φσp(y)| ≤ Constσ · Ne−(ησN |y|)1/2
.(2.5)

Here and below η is a positive constant which may differ among the different estimates. In particu-
lar, since [1−χx(y)] and hence the first integrand on the right of (2.1) are supported at |y| ≥ d(x)/2,
the exponential bound follows

|I1| ≤ Constσ,f · Ne−(ησNd(x))1/2
(2.6)

We turn to the second error term, I2 =
∫

Φσ(y)[f(x)−f(x−y)]χx(y)dy. Traditionally, such a term
is upper bounded by (d(x))p‖f‖Cp[x−d(x),x+d(x)]/p! through Taylor expanding f(x− y) about y = 0
and by invoking the moments condition (1.3). This bound is useful for a vanishing neighborhood,

1The result follows, for example, by sampling the Fourier transform σ(ξ) = 1/2π
∫

ϕσ(y)e−iyξdy,

σ

(
|k|
N

)
=

N

2π

∫
ϕσ(Ny)e−iNy

|k|
N dy

=
N

2π

∞∑
n=−∞

∫ π

−π

ϕσ(N(y + 2πn))e−i|k|ydy =
N

2π

∫ π

−π

( ∞∑
n=−∞

ϕσ(N(y + 2πn))

)
e−i|k|ydy,

and comparing with the discrete inverse Fourier transform, σ(|k|/N) =
∫

Φσ(y)e−i|k|ydy
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d(x) � 1, while suffering by increasing the contribution of the first term on the right of (2.1), as
reflected through its upper-bound (2.6). We therfore let d(x) be as large as possible so we cannot
argue by localization. Instead, this portion of the error decreases due to cancelation of oscillations
by increasing the order p of Φσp . To this end we write

I2 =
∫ π

−π
Φσp(y)g(y)dy ≡

∑

|k|≤N

σ

(
|k|
N

)
ĝ(k), g(y) = gx(y) := [f(x) − f(x − y)]χx(y),(2.7)

and we turn to estimate the Fourier coefficients on the right. By our assumption, f(x) − f(x − y)
remains analytic for |y| ≤ d(x) and hence gx(y) = [f(x) − f(x − y)]χ(y) is C∞. We quantify the
C∞-regularity of χx(·) in terms of the same Gevrey regularity of order α = 2 that σ has, so that
‖χx‖Cp ≤ M(p!)2(ηρd(x))−p. Thanks to the analyticity of f(x) − f(x − y), it follows that if ρ(·)
and hence χx(·) belong to Gevrey class Gα, so does gx(y) = [f(x) − f(x − y)]χx(y), and hence

‖gx(y)‖Cp ≤ M
(p!)α

(d(x)η)p
, |y| < d(x).

The constants M = Mρ,η and η = ηρ,f capture the detailed Gevrey and analyticity properties of
ρ(y) and f(x − y) for |y| < d(x); the order p is arbitrary. The Fourier coefficients ĝ(k) in (2.7) do
not exceed

|ĝ(k)| ≤ Const.‖gx(y)‖Cp |k|−p ≤ Const.M
(p!)2

(η|k|d(x))p
, η = ηρ,f .

For σ(|k|/N), we distinguish between the low modes, |k| ≤ N/2 and the high modes N/2 < |k| ≤ N ,
setting

I21 :=
∑

|k|≤N/2

[
σp

(
|k|
N

)
− 1

]
ĝ(k)

I22 :=
∑

N/2<|k|≤N

[
σp

(
|k|
N

)
− 1

]
ĝ(k)

Since g(y) = [f(·) − f(· − y)]χ(y) vanishes at y = 0 we have
∑

ĝ(k) = g(0) = 0 and hence
I2 = I21 + I22 + I23 where I23 := −

∑
|k|>N ĝ(k). For the first term we use a Taylor expansion

around the origin: the accuracy assumption (1.4) yields

∣∣∣σp

(
|k|
N

)
− 1

∣∣∣ ≤ 1
p!
‖σ‖Cp([− 1

2
, 1
2
])

(
|k|
N

)p

, |k| ≤ N

2
.

Restricted to the [−1/2, 1/2] interval, σ retains an analytic bound ‖σ‖Cp ≤ Const.p!η−p
σ , and hence

I21 does not exceed

|I21| :=
∣∣∣

∑

|k|≤N/2

[
σp

(
|k|
N

)
− 1

]
ĝ(k)

∣∣∣ ≤ 1
p!
‖σ‖Cp([− 1

2
, 1
2
])

∑

|k|≤N/2

(
|k|
N

)p (p!)2

(ηρ,f |k|d(x))p

≤ Const.N(p!)2
1

(ηNd(x))p
, η = ησηρ,f .(2.8)

For the high modes, ĝx(k) are sufficiently small so that the simple bound of |σp(|k|/N)| ≤ 1 will do
for I22,
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|I22| :=
∣∣∣

∑

N/2<|k|≤N

[
σp

(
|k|
N

)
− 1

]
ĝ(k)

∣∣∣ ≤
∣∣∣

∑

N/2<|k|≤N

(p!)2

(ησ |k|d(x))p

∣∣∣ ≤ Const.N(p!)2
1

(ησNd(x)/2)p
.

(2.9)

Similarly, I23 does not exceed

|I23| :=
∣∣∣

∑

|k|>N

ĝ(k)
∣∣∣ ≤ (p!)2

∑

|k|>N

1
(ησ|k|d(x))p

≤ Const.N(p!)2
1

(ησNd(x))p
.(2.10)

We combine the last three bounds to conclude

|I2| ≤ Const.N(p!)2
1

(ηNd(x))p
, η = min(ησηρ,f , ησ/2, ηρ,f )

which is minimized at the same value as before, p = pmin := (η · Nd(x))1/2, so that

|I2| ≤ Const · Ne−(ηNd(x))1/2
(2.11)

Finally, we recall the assumed regularity of ρ is in fact dictated by that of σ and hence the various
bounds, η = ησ,f . We summarize by stating

Theorem 2.1. Given the Fourier projection SNf of a piecewise analytic function f(·), we consider
a C∞

0 [−1, 1] filter σ(ξ),

Sσ
Nf(x) =

∑

|k|≤N

σ

(
|k|
N

)
f̂ke

ikx.

Assume that σ has Gα-regularity and that it is accurate of order p in the sense of satisfying the
moments condition

σ(n)(0) = δn0, n = 0, 1, . . . , p − 1.(2.12)

We set the adaptive order p(x) := (η·Nd(x))1/α depending the distance function d(x) = dist(x, sinsuppf(·)).
The resulting adaptive filter, Sσ

Nf , recovers the pointvalues f(x) with the following exponential ac-
curacy

|f(x) − Sσ
Nf(x)| ≤ Const · Ne−α(η·Nd(x))1/α

.(2.13)

The constant η = ησ,f is dictated by the specific Gevrey and piecewise-analyticity properties of σ
and f .

We close this section with the promised statements on the exponential error bound (2.4).

Lemma 2.1. Consider the p order filter σp(ξ) =





exp

(
ξp

ξ2 − 1

)
, |ξ| < 1

0 |ξ| ≥ 1.
Then there exist

constants η such that

‖σp‖Cp ≤ Const.(p!)2η−p,(2.14)

‖σp‖Cp([− 1
2
, 1
2
]) ≤ Const.p!η−p.(2.15)
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To verify (2.14) we first note that σ
(s)
p is a collection of polynomial terms which premultiply the

exponential in the variable ξp/(ξ2 − 1). Each derivative of σp doubles the number of such terms;
thus, by successive application of Leibniz’s rule, σ

(s)
p consists of 2s α-terms, each of which is of the

form

Cα

∏

αj

( ξp

ξ2 − 1

)(αj)
exp

( ξp

ξ2 − 1

)
, |α| =

∑

j

αj = s.(2.16)

Here, the Cα’s are constant integers with |Cα| ≤ η−s
1 for some fixed η1 > 0. We consider the

prototype term Tp,s :=
( ξp

ξ2−1

)(s)
exp

(
ξp

ξ2−1

)
, corresponding to α = (0, 0, . . . , s),

Tp,s =
( ξp

ξ2 − 1

)(s)
exp

( ξp

ξ2 − 1

)

=
s∑

k=0

(
s
k

)
p!

(p − s + k)!
ξp−s+k k!

(ξ2 − 1)k+1
exp

( ξp

ξ2 − 1

)
+ lower order terms .(2.17)

Here, by ‘lower order terms’ we refer to the singular behavior of (ξ2−1)−j , j ≤ k near ξ = ±1, which
weaker then the leading term (ξ2 − 1)−k+1. To control the amplitude of Tp,s we let a(ξ) := (ξ2 − 1)
and note that the expression |a(ξ)|−kexp(αa(ξ) + β/a(ξ)) is maximized at ξ = ξmax such that
a(ξmax) ∼ −β/k, yielding

|Tp,s| ≤ Const.

s∑

k=0

(
s
k

)
p!

(p − s + k)!
k!kke−k < Const.p!

s∑

k=0

(
s
k

)
k! ≤ Const.2sp!s!.

The other 2s terms in (2.16) admit similar bounds and the resulting Tp,p bound yields (2.14) with
η = 4η1. To prove (2.15), we restrict attention to a subinterval which is bounded away from ±1,
so that the ξ-dependent terms in (2.17) remain uniformly bounded, (ξ2 − 1)−jexp

(
ξp/(ξ2 − 1)

)
≤

η−k
2 , j ≤ k + 1, and we are left the desired upper bound

|Tp,p| ≤ Const.

p∑

k=0

(
p
k

)
p!
k!

k!η−k
2 < Const.2pp!(η2)−p,

and (2.15) follows with η = 4η1η2.

The intricate part in the construction of such highly-accurate filters or mollifiers is the further
requirement for their localization (in physical space) or smoothness (in Fourier space). One cannot
increase the order p arbitrarily without steepening Φσ, or equivalently, without losing smoothness
of σ. The solution taken here was to satisfy the moments condition approximately, modulo ex-
ponentially negligible errors while retaining the desired smoothness properties. We note that our
optimal adaptive filter is essentially localized in the physical space in the sense that the associated
mollifier Φσ is exponentially small for |y| � 1/N , (2.5), see figure 2.1. In contrast, the adaptive
mollifiers constructed in [TT02], ρ(y/d(x))Dp(y/d(x))/d(x), were compactly supported in physical
space (adapted to the smoothness neighborhood of x) and only essentially localized in the dual
Fourier space. The precise result is quantified in the following.

Theorem 2.2. Consider the even filter σ with Gevrey regularity Gα satisfying the p-order accuracy
condition (1.4), with p ∼ N1/α. Then the associated mollifier, Φσ satisfies the moments condition
(1.3) modulo an exponentially negligible error,

∫ π

y=−π
ynΦσ(y)dy = δn0 + Const.e−(ηN)1/α

, n ≤ Const.N1/α
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For proof, we appeal to (2.2)

∫ π

y=−π
ynΦσ(y)dy =

N

2π

∫ π

y=−π
ynϕσ(Ny)dy +

N

2π

∑

n 6=0

∫ π

y=−π
ynϕσ(N(y + 2πn))dy =: I1 + I2.

For the first term on the right we have

I1 =
N

2π

∫ ∞

y=−∞
ynϕσ(Ny)dy − N

2π

∫

|y|≥π
ynϕσ(Ny)dy =: I11 + I12.

We now have I11 = (−iN)nσ(n)(0) = δn0 by (1.4), where the usual decay rate |ϕσ(y)| ≤ Const.‖σ‖Cs ·
|y|−s yields

|I12| ≤ Const.
N1−s

2π
‖σ‖Cs

∫ ∞

π
yn−sdy ≤ Const.(ηN)1−s(s!)α, n ≤ s − 2.

The remainder amounts to a similarly exponentially small term

|I2| ≤ Const.
N1−s

2π
‖σ‖Cs

∫ π

y=−π
|y|n 1

(2π − |y|)s dy ≤ Const.(ηN)1−s(s!)α, n ≤ s

which is minimized at s ∼ (ηN)1/α and the lemma follows.
We note in passing that the last theorem could be used as a starting point for an alternative proof
of the main result stated in theorem 2.1.
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Figure 2.1: The mollifier (top) and its semi-log plot (bottom) with the mollifier defined from the
filter (3.1) used in the numerical experiments, with N = 128 and filter orders p = 4, 8, and 12 in
(a-b), (c-d), and (e-f) respectively.
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3. Numerical Experiments

For the following examples we utilize the filter

σp(ξ) =





exp
(

cpξp

ξ2−1

)
|ξ| < 1

0 |ξ| ≥ 1
(3.1)

which has Gevrey regularity of order α = 2. Its advocated order is then optimized at the adaptive
order, p = p(x) =

√
κNd(x). For a given filter, the free constant cp should be selected to enhance

the immediate localization of Φσ(·) by minimizing ‖σ‖C1 . The value of such an optimal cp does not
permit a closed form expression; an approximate condition used in the numerical examples below
is σ(2)(1/2) = 0, resulting in

cp := 2p 3
4
· 9p2 + 3p + 14
9p2 + 12p + 4

.

To allow direct comparison between our adaptive filters and the adaptive mollifiers advocated in
[TT02], we concern ourselves with the two prototypes of piecewise analytic functions, f1(x) and
f2(x) given below.

f1(x) =
{

sin(x/2) x ∈ [0, π)
− sin(x/2) x ∈ [π, 2π)(3.2)
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f2(x) =
{

(2e2x − 1 − eπ)/(eπ − 1) x ∈ [0, π/2)
− sin(2x/3 − π/3) x ∈ [π/2, 2π)(3.3)
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The first function, f1(·), possesses a mild regularity constant and a single discontinuity at x = π;
consequently d(x) = |x − π| for x ∈ [0, 2π]. The second function, f2(·), was constructed as a more
challenging test problem with a large gradient to the left of the discontinuity at x = π/2. Moreover,
lacking periodicity f2(·) feels three discontinuities per period;

d(x) = min(|x|, |x − π/2|, |x − 2π|) x ∈ [0, 2π].

For both functions the exact Fourier coefficients, {f̂(k)}k≤N , are given and then filtered to re-
cover the intermediate pointvalues π

N (ν − 1
2 ) for ν = 1, 2, . . . 2N . Graphs (a)-(d), use fixed order

filters, verifying the well known fact that higher order filters gives superior convergence away
from discontinuities and lower order filters near discontinuities. Graphs (e)-(f) illustrate the su-
perior convergence for the adaptive filter described in theorem 2.1, computed with adaptive order
p = p(x) = max(2, 1

2(Nd(x))1/2). We note in passing that the same filter order is used for both f1(·)
and f2(·), ignoring the different analyticity properties of f1 and f2 (reflected by different analyticity
constants ηf ), and achieving exponential accuracy in both instances. Results of the adaptive filter
are contrasted with the spectrally accurate filter of Vandeven, [Va91], where the variables order,
p = Nγ remains uniform throughout the computational domain.
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Figure 3.1: Recovery of f1(x) (top) and the approximation error (bottom) from their N = 128-
mode spectral projections. The filter (3.1) was of orders N1/4 (a)-(b), N1/2 (c)-(d), and
max(2, 1

2 (Nd(x))1/2)
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Figure 3.2: Recovery of f2(x) (top) and the approximation error (bottom) from their N = 128-
mode spectral projections. The filter (3.1) was of orders N1/4 (a)-(b), N1/2 (c)-(d), and
max(2, 1

2 (Nd(x))1/2) (e)-(f).
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Figure 3.3: Error plots for the recovery of f1(x) (top) and f2(x) (bottom) from their N =
32, 64, and128 mode spectral projections. The filter (3.1) was of orders N1/4 (a)-(b), N1/2 (c)-
(d), and max(2, 1

2(Nd(x))1/2) (e)-(f).

4. Summary

The analysis presented here quantitatively resolves the classical methodology that for improved
accuracy low order filters should be used near discontinuities and high order filters away. The
optimal adaptive filters presented here retain the traditional robustness associated with low order
filtering, yet achieve a significant increase in accuracy with minimal increase to computational cost.
Combined with the automated edge detection methods, [GeTa00], adaptive order filtering is a black
box procedure for the exponentially accurate reconstruction of a piecewise smooth function from
its spectral information.

ACKNOWLEDGMENTS. Research was supported in part by ONR Grant No. N00014-91-J-
1076 and by NSF grants #DMS04-07704 (ET) and #DMS01-35345 (JT). Part of the research was
carried out while J. Tanner was visiting the Center for Scientific Computation and Mathematical
Modeling (CSCAMM) at the University of Maryland, College Park.

References

[Bo95] J. P. Boyd A Lag-Averaged Generalization of Euler’s Method for Accelerating Series, Appl. Math. Comput.,
(1995) 143-166.

[Bo96] J. P. Boyd The Erfc-Log Filter and the Asymptotic of the Euler and Vandeven Sequence Accelerations, Pro-
ceedings of the Third International Conference on Spectral and High Order Methods, (1996) 267-276.

[Bo05] J. P. Boyd, Trouble with Gegenbauer reconstruction for defeating Gibbs’ phenomenon: Runge phenomenon in
the diagonal limit of Gegenbauer polynomila approximations, J. Comput. Physics, in Press (2005).

[GeTa00] A. Gelb and E. Tadmor, Detection of Edges in Spectral Data II. Nonlinear Enhancement,SIAM Journal of
Numerical Analysis, 38 (2000), 1389-1408.

[GeTa02] A. Gelb and E. Tadmor, Spectral reconstruction of one- and two-dimensional piecewise smooth functions
from their discrete Data, Mathematical Modeling and Numerical Analysis 36 (2002), 155-175.

[GoSh98] D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Review 39 (1998), 644-668.



12 E. Tadmor and J. Tanner

[GoTa85] D. Gottlieb and E. Tadmor, Recovering pointwise values of discontinuous data within spectral accuracy, in
“Progress and Supercomputing in Computational Fluid Dynamics”, Proceedings of 1984 U.S.-Israel Workshop,
Progress in Scientific Computing, Vol. 6 (E. M. Murman and S. S. Abarbanel, eds.). Birkhauser, Boston, 1985,
357-375.

[GrRy] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2000.
[Jo] F. John, Partial Differential Equations, 4th ed., Springer-Verlag, New York, 1982.
[MMO78] A. Majda, J. McDonough and S. Osher, The Fourier method for nonsmooth initial data, Math. Comput.

30 (1978), 1041-1081.
[PT02] S. Pilipovic and N. Teofanov, Wilson bases and ultramodulation spaces, Math. Nachr., 242 (2002), 179-196.
[Ta94] E. Tadmor, Spectral Methods for Hyperbolic Problems, from “Lecture Notes Delivered at Ecole Des Ondes”,

January 24-28, 1994. Available at http://www.math.ucla.edu/t̃admor/pub/spectral-approximations/Tadmor.INRIA-
94.pdf

[TT02] E. Tadmor and J. Tanner, Adaptive Mollifiers - High Resolution Recovery of Piecewise Smooth Data from its
Spectral Information, J. Foundations of Comp. Math. 2 (2002), 155-189.

[Va91] H. Vandeven, Family of Spectral Filters for Discontinuous Problems, Journal of Scientific Computing, V6 No2
(1991), 159-192.

Department of Mathematics, Center for Scientific Computation and Mathematical Modeling (CSCAMM),
Institute for Physical Science & Technology (IPST), University of Maryland, College Park, MD
20742.
E-mail address: tadmor@cscamm.umd.edu

Department of Statistics Stanford University, CA 94305
E-mail address: jtanner@stat.stanford.edu


